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Abstract—Missing numerical values are prevalent, e.g., owing
to unreliable sensor reading, collection and transmission among
heterogeneous sources. Unlike categorized data imputation over
a limited domain, the numerical values suffer from two issues:
(1) sparsity problem, the incomplete tuple may not have sufficient
complete neighbors sharing the same/similar values for impu-
tation, owing to the (almost) infinite domain; (2) heterogeneity
problem, different tuples may not fit the same (regression) model.
In this study, enlightened by the conditional dependencies that
hold conditionally over certain tuples rather than the whole
relation, we propose to learn a regression model individually
for each complete tuple together with its neighbors. Our IIM,
Imputation via Individual Models, thus no longer relies on sharing
similar values among the k complete neighbors for imputation,
but utilizes their regression results by the aforesaid learned
individual (not necessary the same) models. Remarkably, we show
that some existing methods are indeed special cases of our IIM,
under the extreme settings of the number � of learning neighbors
considered in individual learning. In this sense, a proper number
� of neighbors is essential to learn the individual models (avoid
over-fitting or under-fitting). We propose to adaptively learn in-
dividual models over various number � of neighbors for different
complete tuples. By devising efficient incremental computation,
the time complexity of learning a model reduces from linear to
constant. Experiments on real data demonstrate that our IIM with
adaptive learning achieves higher imputation accuracy than the
existing approaches.

I. INTRODUCTION

Missing values are commonly observed over numerical

data [16], for instance, owing to failures of sensor reading

devices [17], poorly handling overflow during calculation,

mismatching in integrating heterogeneous sources [13], and

so on. Simply discarding the incomplete tuples with missing

values makes the data even more incomplete.

A. Motivation

We notice that the existing imputation techniques [23], [3],

[6] utilizing either complete attributes or complete tuples suffer

from two major issues, especially when handling numerical

data from various sources. (See examples below.)

1) Sparsity problem: The imputation via finding the clos-

est complete tuple relies on the assumption that there exist

neighbors sharing the same values. Unfortunately, owing to

the sparsity issue, such an assumption is often not the case

in practice, e.g., tx in Figure 1 does not have any complete

tuple sharing the same value. Thereby, the kNN method [3]

proposes to aggregate the values of complete neighbors.

Owing to sparsity, there may not exist a complete tuple

containing exactly the actual correct value of the incomplete

tuple. For this reason, it is also studied to impute a missing

Tid A1 A2

t1 0 5.8

t2 0.8 4.6

t3 1.9 3.8

t4 2.9 3.2

t5 6.8 3

t6 7.5 4.1

t7 8.2 4.8

t8 9 5.5

tx 5 –

Fig. 1: Motivation example of two-dimension data, where tx [A2] is a missing
value with ground truth 1.8. Our IIM learns the individual regression models
(blue and red lines) w.r.t. heterogeneous neighbors (t4 and t5), instead of a
same model (black or gray line) for all neighbors

value from the regression model [22]. Instead of using a value

directly from the complete tuple (often unlikely to be the actual

correct value owing to sparsity), the prediction based approach

(GLR) [22] assumes tuples sharing regression models. For

instance, in Figure 1, t5 and t6 have different values, but share

the same regression model (blue line).

It is worth noting that even a complete tuple (t5) is trusted

(with no error), its value cannot be directly used as the

imputation of the incomplete tuple (tx ), owing to the aforesaid

sparsity issue. However, this tuple t5 can be used to learn a

regression model. The incomplete tuple tx may not directly

use the value of t5, but use the value predicted by regression

model of t5, since neighbors may not share the same value

but the regression model.

2) Heterogeneity problem: Since data often describe var-

ious facts or are collected from heterogeneous sources, no

global semantics may fit the entire data [29]. That is, there may

not exist a single regression model that captures the semantics

over all the data. Or generally speaking, one size does not fit

all. For instance, in Figure 1, a single GLR model (black line)

cannot fit all the data points in different streets.

To address the heterogeneity problem, instead of assuming

the same regression, we argue to learn a fine-grained individual

regression model that is only valid locally over a complete

tuple and its neighbors. For instance, in Figure 1, the individual

regression model (red line) is only valid over t4 and its

neighbors such as t3. Tuple t5 in another street could have

another regression model (blue line) that is distinct from t4.

The imputation can thus utilize these more accurate individual

models, instead of the imprecise global model (GLR) that does

160

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00023



not fit all the data. The benefit of the imputation by individual

models (IIM) would be the clearly higher accuracy than that

of GLR with a single (inaccurate) global model, as the results

shown in Table V.

Example 1. Consider a check-in dataset of two dimension in

Figure 1 for simplicity (more general, high dimensional data

are considered in Section VI of experiments). Tuples t1 − t8
(denoted by gray dots) represent 8 observations in the streets

outside a building. There is another tuple tx with tx [A1] = 5
observed but tx [A2] missing during transmission (the truth of

tx [A2] is denoted by the black dot).

The nearest neighbor based imputation finds k (say k = 3)

tuples that are most similar to tx on the complete attribute

A1, i.e., t4, t5, t6. The mean value of three tuples on A2 is

then considered as the imputation of tx (kNN, white square).

Unfortunately, since no tuple is sufficiently close to the truth

of tx (owing to sparsity), the imputation is not accurate.

The global linear regression (represented by solid black

line) obviously cannot capture the difference between obser-

vations t1 − t4 and t5 − t8 in two streets. The imputation by

the global regression (GLR, black triangle) is not accurate.

The local regression assumes a same regression locally over

the neighbors t4, t5, t6 of the incomplete tuple tx , found on

the complete attribute A1. Again, owing to the heterogeneity

issue, t5, t6 and t4 from two streets, respectively, indeed

have different regression models. The imputation by the local

regression (LOESS, gray triangle) is not accurate either.

The idea of IIM is enlightened by the conditional depen-

dencies [7], which only hold conditionally over certain tuples

rather than the whole relation. That is, the constraint does not

fit all the data, but only applies to a subset of tuples specified

by certain conditions. Analogously, a regression model may

not fit all the data, but only applies “conditionally” to the

nearby neighbors of a tuple. Thereby, we propose to learn

a regression model individually for each complete tuple and

its neighbors, instead of a single global regression model that

cannot fit all the tuples.

B. Proposal

The Imputation via Individual Models (IIM) proposed in this

paper thus has two phases: (1) the learning phase learns indi-

vidually a regression for each complete tuple together with its

neighbors, e.g., f1, . . . , f3 for t1, . . . , t3, respectively, in Figure

2; and (2) the imputation phase finds k complete imputation

neighbors of the incomplete tuple, and aggregate the regression

results produced by the aforesaid learned individual regression

models of the k complete neighbors.

For example, tx could use the regression models of neigh-

bors t4, t5 and t6, and aggregate the results of different

regressions as the imputation (IIM, white triangle in Figure 1).

A key issue is how to perform individual learning for each

complete tuple. To learn the individual model, it needs to find a

number of � learning neighbors that are similar to the tuple. A

different number of learning neighbors lead to various learned

models. Determining the number � of neighbors for learning is

TABLE I: Notations

R schema on m attributes

r relation of n complete tuples

tx incomplete tuple with missing value

Ax incomplete attribute in tx , Am by default for simplicity

F complete attributes in tx , R \ {Am} by default

φ parameter of linear regression model

� number of learning neighbors for learning the individual model of
a complete tuple

k number of imputation neighbors for imputing an incomplete tuple

highly non-trivial. For each complete tuple, (1) if the number

� is too small, the learned regression model may overfit the

data; (2) on the other hand, if � is too large (e.g., considering

almost all the heterogeneous tuples in the dataset like global

regression), it leads to under-fitting. (We address the overfitting

and under-fitting issues by adaptive learning below.)

C. Contribution

Our major contributions in this paper are summarized as:

(1) We propose a novel approach IIM of Imputation via

Individual Models (Section III), with learning and imputation

phases as aforesaid. The heterogeneity issue is addressed by

learning an individual model for each tuple together with its

neighbors. IIM does not directly use the values of complete

neighbors for imputation (but their models) and thus tackles

the sparsity problem.

(2) We prove that some existing approaches are indeed the

special cases of IIM under extreme settings (i.e., � = 1 or

� = n in Propositions 1 and 2 in Section IV). It does not only

illustrate the rationale of our proposal, but also motivate us

to adaptively determine a proper � (in between the extreme 1
and n) for each tuple to avoid over-fitting or under-fitting.

(3) We adaptively learn the individual model for each

complete tuple over a distinct number � of learning neighbors

(Section V). By introducing a validation step, we determine a

proper number � and the corresponding learned model for each

complete tuple, which can impute most accurately the other

complete tuples (considered as validation set). Experiments

show that the adaptively learned individual models indeed lead

to better imputation results. Efficient incremental computation

is devised for adaptive learning, which reduces the time

complexity of learning a model from linear to constant.

(4) We conduct extensive experiments over real datasets

(Section VI). The results demonstrate that our IIM has signif-

icantly better performance than the state-of-the-art imputation

methods. Remarkably, we show in [1] that the proposed

imputation indeed improves the accuracy of classification

application over the data with real-world missing values.

Table I lists the frequently used notations.

II. PRELIMINARY AND RELATED WORK

In this section, we introduce preliminaries and categorize

major imputation approaches into two classes in Table II.

The key ideas of imputation based on tuple models and
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TABLE II: Imputation methods considered in (empirical) comparison

Approach Model Property

Mean [15] Tuple Global average

kNN [3] Tuple Local average

kNNE [14] Tuple kNN Ensemble

IFC [26] Tuple Cluster average

GMM [31] Tuple Cluster average

SVD [30] Tuple k most significant eigengenes

ILLS [9] Tuple Local regression over tuples

GLR [22] Attribute Global regression

LOESS [11] Attribute Local regression

BLR [28] Attribute Bayesian linear regression

ERACER [24] Attribute Neighbor regression

PMM [19] Attribute Predictive mean matching

XGB [10] Attribute Xgboost, tree boosting system

attribute models are presented in Figure 2. We discuss that

each category of existing techniques suffers from either the

heterogeneity or the sparsity problem. It motivates us to devise

the novel imputation via individual models in Section III.

Consider a relation r of n tuples r = {t1, t2, . . . , tn}, with

schema R = {A1,A2, . . .Am} on m attributes. We denote

ti[Aj ] the value of tuple ti ∈ r on attribute Aj ∈ R.

Let tx be a tuple over R with missing value on attribute

Ax . We call Ax the incomplete attribute and F = R \ {Ax}
the complete attributes. (For simplicity, we consider Am as

the incomplete attribute by default. Missing values on other

attributes could be addressed similarly. Multiple incomplete

attributes in a tuple could be addressed one by one.)

A. Imputation based on Tuple Models

1) Nearest Neighbor Model kNN: To impute the missing

numerical values, a natural idea is to retrieve similar complete

instances from r for imputation, known as the k -nearest-

neighbor approach, kNN [3], [6].

Let NN(tx ,F , k) be k nearest neighbors of tx on attributes

F from r , e.g., with the smallest Euclidean distance [4]

dx,i =

√ ∑

A∈F

(tx[A]−ti[A])2

|F| (1)

where dx,i denotes the distance between tuple tx and ti on

complete attributes F .

The kNN imputation is in two steps: (1) find k nearest

neighbors Tx = NN(tx ,F , k), and (2) use the Am values

of neighbors for imputation, e.g., by arithmetic mean

t ′x [Am ] =

∑

tj∈Tx

tj [Am]

k
. (2)

2) Variations of Tuple Models: The first variation is on the

neighbors in step (1) of the kNN imputation. kNNE [14] finds

different groups of k neighbors by computing distances on

various subsets of features and then combine the imputation

results from these different groups. Instead of k neighbors,

the Mean method [15] simply identifies all the tuples (as

Fig. 2: Learning (dashed arrows) models over complete data and imputing
(solid arrows) the missing value tx [Am ] by tuple model h, attribute model
g, or individual models f1, . . . , f3 w.r.t. t1, . . . , t3

Tx ) for aggregation in the following step. Clustering is also

employed to identify the neighbors for imputation, e.g., IFC

[26] considering fuzzy k-means [20] or GMM [31] using

the Gaussian mixture model. Moreover, instead of searching

existing data as neighbors, the SVD approach [30] finds

a set of mutually orthogonal expression patterns (so-called

eigenvectors) as Tx for aggregation imputation.

The second variation is on the aggregation model in step

(2) of the kNN imputation. In addition to Formula 2, more

advanced aggregation considers the distances of neighbors as

aggregation weights [4]. Furthermore, instead of the model of

aggregating tj [Am] over tj ∈ Tx , ILLS [9] learns a model h

for predicting tx values from Tx . In this sense, the arithmetic

mean aggregation in Formula 2 is a special h that does not

need learning from Tx [F ] and tx [F ]. We call h a tuple model,

and this category the tuple model-based imputation.

3) Discussion: The idea of learning over individual tuples

and their closest neighbors in our proposal IIM is related

to past work kNN [3]. The difference is that to impute the

incomplete tuple tx , kNN uses (aggregates) directly the values

of the k -closest neighbors ti of tx as the imputation, while

our IIM learns individual models for the neighbor tuples ti
by considering their �-closest neighbors tj , respectively. The

values predicted by the learned models are then aggregated

as the imputation. The defeat of directly using the values of

k-closest neighbors to impute missing values is that owing

to sparsity, no sufficient neighbors could be found sharing

similar values with incomplete tuple tx . For instance, tx in

Figure 1 does not have any tuple sharing highly similar values.

Alternatively, we learn a model from the tuple and its �-closest

neighbors. Tuples may not share the same values but models.

For example, tx in Figure 1 fits the model that is learned from

t4 and its neighbors, and is thus accurately imputed.

B. Imputation based on Attribute Models

1) Linear Regression Model GLR: Rather than capturing

relationships to the complete tuples in r , another well-known

idea is to explore the relationships between incomplete and

complete attributes, e.g., by the linear regression model [23].

Let LR(F ,Am ,R) denote the linear regression model from

complete attributes F to incomplete attribute Am , having

t [Am] = φ[C]1 + φ[A1]t [A1] + . . .+ φ[Am−1]t [Am−1] + ε

= (1, t [F ])φ+ ε (3)
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where t is a tuple over R, φ = {φ[C], φ[A1], . . . , φ[Am−1]}
�

is the parameter of linear regression (φ[C] denotes the constant

term), and ε is the error term.

The imputation is thus in two steps: (1) learn parameter φ
from relation r of complete tuples (e.g., by Ordinary Least

Square or Ridge Regression [27], see more details in Section

III-A), and (2) perform the imputation referring to the learned

linear regression model,

t ′x [Am] = (1, tx [F ])φ. (4)

Since the linear regression is declared on all tuples over R,

we call this global linear regression method, GLR.

2) Variations on Attribute Models: Similar to the idea of

aggregating only kNN tuples [3] rather than Mean [15] of all

tuples in Section II-A, LOESS [11] learns a local regression

over the neighbors NN(tx ,F , k) of tx , instead of the global

regression over all tuples. Statistical analysis could be further

employed to linear regression, e.g., Bayesian linear regression

BLR in the context of Bayesian inference. (We use the MICE

[8] implementation mice.norm in R in experiments.)

The attribute models can cooperate with the tuple models.

The ERACER approach [24] further studies the regression

model over neighbors, i.e., combining both g and h in Figure

2. For instance, the temperature of a sensor is related to its hu-

midity (g), as well as its neighbors’ temperature and humidity

(h). The predictive mean matching PMM [19] does not directly

use the value t ′
x [Am] predicated by linear regression as the

imputation. Instead, it finds neighbors whose predications also

by the same linear regression are most similar to the predicated

value t ′
x [Am]. A randomly selected original value tj[Am] of

the identified neighbors tj is returned as the imputation. The

widely used XGboost [10] (XGB) algorithm learns a set of

classification and regression trees and ensembles the results.

(We use the MICE [8] implementation mice.pmm and library

‘xgboost’ in R in the experiments.)

3) Discussion: Owing to the heterogeneity problem, assum-

ing the same regression either globally, locally or randomly

(for xgboost) [11] for different tuples could be indefensible.

III. IMPUTATION VIA INDIVIDUAL LEARNING

As illustrated in Figure 2, the Imputation via Individual

Models (IIM) addresses the heterogeneity and sparsity prob-

lems in two aspects, respectively. (1) The learning phase in

Section III-A learns a linear regression model individually for

each tuple (together with its neighbors, e.g., models f1, . . . , f3
in Figure 2), instead of assuming the same regression for

different tuples (with heterogeneity). This is enlightened by the

conditional dependencies that hold conditionally over certain

tuples [7]. (2) The imputation phase in Section III-B aggre-

gates the regression results of multiple individual regression

models suggested by different neighbors, rather than relying

the neighbors to have similar values (suffering sparsity).

A. Learning Phase

The learning phase learns the parameter φi of the linear

regression model (in Formula 3) individually for each tuple

Algorithm 1: Learning(r , �, F , Am )

Input: relation r of complete tuples, number � of

learning neighbors, complete attributes F ,

incomplete attribute Am

Output: Φ the set of regression parameters φi learned

for all tuples ti in r

1 for each ti ∈ r do

2 Ti ← NN(ti,F , �);
3 φi ← LR(F ,Am ,Ti);
4 return Φ

ti ∈ r . The learned individual regression models are then

utilized in the imputation in Section III-B.

Algorithm 1 presents the procedure of individual learning

over r for the regression from F to Am . For each ti ∈ r ,

we consider a set Ti of nearest neighbors i.e., NN(ti,F , �)
in Line 2, a.k.a. learning neighbors. They are obtained in

the same way of obtaining k nearest neighbors in the kNN

approach, NN(tx ,F , k), as introduced in Section II-A1. That

is, return the tuples with the smallest Euclidean distance on

attributes F [4]. In case of sparsity, the returned neighbors may

not share similar values with the incomplete tuple, and thus

the kNN approach directly aggregating the values of nearest

neighbors is not accurate. To deal with sparsity, we propose

to learn regression models over the nearest neighbors, and use

the learned models to predict the missing value.

Let � be the number of ti’s neighbors considered in indi-

vidual learning, namely the number of learning neighbors. As

stated in Section I-A, the number � should be sufficiently large

to avoid overfitting, but not too large owing to heterogeneity. A

straightforward idea is to simply consider a fixed number � for

all the tuples in r (see Section VI-C2 for empirical results on

considering various fixed �). More advanced adaptive learning

considering distinct number of learning neighbors for various

tuples in r is devised in Section V.

1) Learning Regression Parameter: Given a set of tuples,

Ti = {t1, t2, . . . , t�} ⊆ r , we employ Ridge Regression [27]

to learn the parameter φi for the regression over Ti,

φi = (X�
X + αE )−1

X
�
Y (5)

where α is regularization parameter, E is identity matrix [25],

φi = {φi[C], φi[A1], . . . , φi[Am−1]}
�,

Y =

⎛
⎜⎜⎜⎝
t1[Am]
t2[Am]

...

t�[Am]

⎞
⎟⎟⎟⎠ , (6)

X =

⎛
⎜⎜⎜⎝
1 t1[A1] t1[A2] . . . t1[Am−1]
1 t2[A1] t2[A2] . . . t2[Am−1]
...

...
...

. . .
...

1 t�[A1] t�[A2] . . . t�[Am−1]

⎞
⎟⎟⎟⎠ . (7)

LR(F ,Am ,Ti) in Line 3 computes the parameter φi over

Ti. It returns Φ the set of parameters φi for all tuples ti.
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Algorithm 2: Imputation(tx , k ,Φ)

Input: tx the tuple with missing value on attribute Am ,

k the number of imputation neighbors, Φ
individual regression parameters for all tuples in r

Output: imputation t ′
x [Am ]

1 Tx ← NN(tx ,F , k);
2 for each tj ∈ Tx do

3 t jx [Am ]← Candidate(φj , tx [F ]);
4 t ′x [Am ]← Combine({t jx [Am ] | tj ∈ Tx});
5 return t ′x [Am ]

Example 2. Consider relation r in Figure 1. Let � = 4.

According to Algorithm 1, we learn the individual regression

for each tuple together with its neighbors in r . For t1, we

have T1 = NN(t1, {A1}, 4) = {t1, t2, t3, t4}. The regression

is learned from T1 with parameter φ1 = {5.56,−0.87}�.

Similar computation applies to other tuples in r , having

Φ =
(
φ1 φ2 . . . φ8

)
=

(
5.56 5.56 . . . −4.36
−0.87 −0.87 . . . 1.11

)
.

2) Handling Single Neighbor: As mentioned in the in-

troduction, a small number � will lead to overfitting. When

� = 1, the nearest neighbor returns only one tuple, i.e.,

Ti = {ti} which has the smallest distance 0 referring to

Formula 11. In this case, it is not sufficient to learn a proper

regression model. Hence, we directly set φi[C] = ti[Am] and

φi[A1] = φi[A2] = . . . φi[Am−1] = 0.

3) Learning Complexity: Line 2 in Algorithm 1 takes

O(mn) time to compute distances of all tuples to ti, and O(�n)
to find the � nearest tuples (advanced indexing and searching

techniques could be applied, which is not the focus of this

study). Referring to Formula 5, Line 3 computes φi with cost

O(m2� +m3). Thereby, the time complexity of Algorithm 1

is O(mn2 + �n2 +m2�n+m3n).

B. Imputation Phase

The imputation phase utilizes the individual regression

models of tx ’s neighbors from r to compute the imputation

candidates. Intuitively, in order to enhance the reliability, rather

than only one neighbor, we consider the regressions of k

imputation neighbors (see Section VI-C1 for an evaluation

on varying the number of imputation neighbors k ). These

k imputation candidates are then aggregated as the final

imputation of tx .

Algorithm 2 presents major steps of the imputation phase:

(S1) Imputation neighbors. Line 1 finds a set Tx of k nearest

neighbors of incomplete tuple tx from relation r on complete

attributes F , i.e., NN(tx ,F , k) as imputation neighbors.

(S2) Imputation candidates. Line 3 computes a possible

imputation t jx [Am ] by using the regression of tx ’s neighbor

tj with parameter φj .

(S3) Combination. Line 4 aggregates the candidates sug-

gested by the regressions of all the tx ’s neighbors in Tx to

form the final imputation t ′x [Am ].

Fig. 3: Intuition example of combining imputation candidates

1) Find imputation neighbors for tx on complete attributes:

This step is the same as step (1) of kNN imputation, i.e.,

find k nearest neighbors Tx = NN(tx ,F , k). However, such

neighbors are utilized in a different way. While the kNN

imputation directly aggregates the values on attribute Am

of neighbors, e.g., in Formula 2, our proposal considers the

individual regression models w.r.t. these neighbors.

2) Imputation via individual regression of each neighbor:

For each neighbor tj ∈ NN(tx ,F , k), we consider the individ-

ual regression with parameter φj learned in the learning phase

by Formula 5.

Let t j
x denote the imputation candidate suggested by the

regression of the neighbor tj . Referring to Formula 3, we have

t jx [Am ] = (1, tx [F ])φj + εj , (8)

where εj is the error term of the regression w.r.t. tj . It is

common to omit the error term εj [28] and thus the imputation

candidate of the neighbor tj is

t jx [Am ] = (1, tx [F ])φj (9)

3) Aggregating individual imputation candidates: In the

imputation phase, the tuple tx with missing values finds

complete tuples ti as its neighbors, and proposes to utilize

the aforesaid individually learned models of ti. Again, owing

to heterogeneity (the argument to learn individualized models),

not all the neighbors ti may share the same models with tx ,

i.e., not all the neighbors ti would provide a model leading to

the correct value for imputing tx . Arbitrarily selecting one ti
may lead to the wrong imputation. A neighbor ti with closer

distance to tx on the complete attribute F does not denote

that its model applies to tx either. Thereby, we propose a

weighted aggregation of the imputation candidates provided

by the models of different neighbors ti, where the candidate

values vote for each other.

The aggregated imputation result is defined by

t ′
x [Am ] =

∑
tj∈Tx

t jx [Am ] · wxj , (10)

where t jx [Am ] is the imputation candidate suggested by the

imputation neighbor tj ∈ NN(tx ,F , k), and wxj is the weight

of candidate t jx [Am ] in aggregation.

Intuitively, we propose to let the candidate values t ix [Am]
(provided by the models from different neighbor tuples ti) vote

for each other, via a weighted aggregation function. Similar

to the idea of majority voting, those candidate values close

with each other are more likely to be the imputation and may

164



assign higher weights in aggregation, while outliers could be

largely ignored with lower aggregation weights. For instance,

in Figure 3, the candidates t1x [Am ] and t2x [Am ] suggested by

models f1 and f2, respectively, are close and agree with each

other. In contrast, the other candidate t3x [Am ] by f3 is outlying

(due to heterogeneity), and would be largely ignored with

lower aggregation weights.

In this sense, we consider the distances of a candidate

t ix [Am ] to the other candidates,

cx i =

k∑
j=1

∣∣t ix [Am ]− t jx [Am ]
∣∣ . (11)

Following the intuition that candidates close to other (i.e.,

having smaller cx i) should assign larger weight, we define

wx i =
c−1
x i

k∑
j=1

c−1
xj

, (12)

having
k∑

j=1

wxj = 1.

Example 3. Let k = 3, � = 4. The imputation starts

from the parameter Φ learned in Example 2. Algorithm 2

performs in three steps: (1) Find imputation neighbors for

the incomplete tuple tx , having Tx = NN(tx , {A1}, 3) =
{t5, t4, t6} (2) Compute the imputation candidate via the

individual regression of each neighbor. For t5, referring

to the regression model LR({A1}, A2,T5) with parameter

φ5 = (−4.36, 1.11)�, the imputation candidate is computed

by t5x [A2] = (1, 5)(−4.36, 1.11)� = 1.19. Similar com-

putation applies to neighbors t4 and t6, having t4x [A2] =
(1, 5)(5.56,−0.87)� = 1.21, t6x [A2] = (1, 5)(−4.36, 1.11)�

= 1.19. (3) Aggregating the aforesaid imputation candidates.

Following Formula 11, we can compute the distance for each

imputation candidates as cx5 = cx6 = 0.02, cx4 = 0.04.

Thus the aggregated imputation by Formula 10 is t ′x [A2] =
1.19 ∗ 50

125 + 1.21 ∗ 25
125 + 1.19 ∗ 50

125 = 1.194.

4) Imputation Complexity: Similar to the analysis in Sec-

tion III-A3, Line 1 in Algorithm 2 searches the k nearest

neighbors with cost O(mn+ kn). The imputation candidates

w.r.t. k imputation neighbors are then computed and combined

in Lines 3 and 4 with cost O(mk + k2). Thereby, the time

complexity of Algorithm 2 is O(mn+ kn).

C. Discussion on Overheads and Benefits

Learning over individual tuples and their � neighbors is

a bit more expensive than learning a global model over

all the n tuples. Referring to [27], the cost of learning a

regression model over n tuples is O(m2n + m3), while the

cost of learning n individual models for n tuples given their �
neighbors is O((m2�+m3)n). Nevertheless, both complexities

are linear w.r.t. the number of tuples n . In particular, all

these models (global or individual) could be offline learned

over complete tuples, and directly used in online imputing the

missing values of various incomplete tuples.

The benefit of the imputation by individual models (IIM)

would be the clearly higher accuracy than that of GLR with

a single (inaccurate) global model, as shown in Table V.

IV. SUBSUMING EXISTING METHODS

To illustrate the rationale of the proposed IIM imputation, in

this section, we theoretically prove that some existing methods

(kNN [3] and GLR [23] introduced in Sections II-A and II-B)

are indeed special cases of our IIM under extreme settings (i.e.,

� = 1 or � = n). It further motivates us to adaptively determine

a distinct number of learning neighbors � (in between the

extreme 1 and n) for each tuple in Section V.

A. Subsuming kNN

First, we show that IIM subsumes kNN by considering only

one learning neighbor in individual learning, i.e., � = 1.

Proposition 1 (Subsume kNN). When we consider a fixed

number of learning neighbors � = 1 and a uniform weight of

imputation candidate wx i =
1
|Tx |

, the proposed IIM algorithm

is equivalent to the kNN imputation. (See proof in [1].)

B. Subsuming GLR

Moreover, we prove that IIM subsumes GLR by considering

all the tuples in r as the learning neighbors in individual

learning, i.e., � = n = |r |.

Proposition 2 (Subsume GLR). When we consider a fixed

number of learning neighbors � = n = |r |, the IIM algorithm

is equivalent to the GLR imputation. (See proof in [1].)

V. ADAPTIVE LEARNING

In the learning phase in Section III-A, a fixed number �
of learning neighbors is considered for all the tuples in r in

Algorithm 1. There are two issues to concern: (1) how to

determine a proper number � of neighbors for learning; and

(2) different tuples may prefer a distinct number � of learning

neighbors, owing to heterogeneity.

In Section V-A, we consider the various candidate regres-

sion models learned under different � for a tuple. The adaptive

learning (Algorithm 3) selects a proper � as well as the

corresponding model for each tuple. Intuitively, to evaluate

whether a model learned under some � is proper, we may

consider a set of complete tuples as validation data, and see

which learned models can best impute the validation tuples

(truth is known in the complete validation tuple).

In Section V-B, to efficiently learn the candidate regression

models under various � for a tuple, we devise an incremental

computing scheme. Remarkably, it reduces the time complex-

ity of individual learning from linear to constant.

A. Adaptive Learning with Validation

Algorithm 3 presents the procedure of adaptively learning

a proper regression model from F to Am for each complete

tuple ti ∈ r under various number � of learning neighbors.

First, Line 2 learns the candidate models under various �
for all tuples in r , denoted by Φ(�), by call the Learning
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Algorithm 3: Adaptive(r ,F , Am )

Input: relation r of complete tuples, complete attributes

F , incomplete attribute Am

Output: Φ the set of regression parameters φi learned

for all tuples ti in r

1 for �← 1 to n do

2 Φ(�) ← Learning(r , �,F ,Am);
3 for each tj ∈ r do

4 Tj ← NN(tj ,F , k);
5 for each ti ∈ Tj do

6 for �← 1 to n do

7 cost[i][�]+ =
(
tj [Am ]− (1, tj [F ])φ

(�)
i

)2

;

8 for i← 1 to n do

9 �∗i ← argmin�∈[1,n] cost[i][�];

10 φi ← φ
(�∗i )
i ;

11 return Φ

Algorithm 1. (Advanced incremental computation is devised

among different � in Section V-B.)

We consider the complete tuples in r as the validation set.

For each tj ∈ r employed as a validation tuple, we assume its

tj [Am ] is missing. The original complete value v of tj [Am ]
is directly used to evaluate how the models from ti (neighbor

of tj) could accurately impute tj[Am ].
It is worth noting that the model of tuple ti learned over a

number of � learning neighbors can be applied multiple times

to impute various tj . The cost[i][�] in Line 7 in Algorithm 3

denotes the total difference between the truths and the imputa-

tions given different validation tuples tj . A model with smaller

cost[i][�] means more accurate imputation when applied, and

thus is preferred in Line 9. This extra overhead is necessary,

since we want to select a proper � that performs well in general

for imputing potentially all the nearby tuples tj .

Example 4. Consider relation r in Figure 1. Suppose that

we have learned candidate models under various � for all the

tuples in Line 2 in Algorithm 3. Given k = 3, we determine a

proper model for each tuple from the candidate models Φ(�).

Let t1 be the validation tuple. Line 4 finds kNN of t1 on the

complete attribute A1, i.e., T1 = {t2, t3, t4}. For each tuple

in T1, say t2, the difference between imputation by various

candidate models of t2 and the truth of t1[A2] are recorded,

cost[2][1] = (5.8− (1, 0)(4.35, 0)�)2 = 2.1,

cost[2][2] = (5.8− (1, 0)(5.79,−1.49)�)2 = 0.0001,

. . .

cost[2][8] = (5.8− (1, 0)(4.41,−0.01)�)2 = 1.93.

Line 7 aggregates such difference costs on all the tuples in r

(as validation set) in addition to the aforesaid t1. We have

{cost[2][1], cost[2][2], . . . , cost[2][8]} = {3.73, 3.67, 0.31,

0.09, 1.47, 2.36, 3.03, 3.65}. Finally, �∗2 = 4 with the minimal

cost[2][4] is selected and φ2 = φ
(4)
2 = {5.56,−0.87}� is

returned as the parameter of the model for t2.

1) Adaptive Learning Complexity: We can precompute

once the nearest neighbors for all tuples in r with cost

O((m + n)n2) = O(n3) and directly use them in learning

individual model for a certain �. According to Algorithm 1,

the learning phase computes φi with cost O(m2�+m3) for a

certain � and cost O(m2n2) for all possible � from 1 to n. For

each tuple ti, the cost for computing difference is O(kn). Thus

the time cost from Line 3 to Line 7 is O(kn2). Obviously, it

costs O(n2) to find the proper �∗ for all the tuples. Finally,

the time complexity of Algorithm 3 is O(m2n2 + n3).

2) Approximation via Stepping: When considering various

� in Line 1 in Algorithm 3, instead of increasing 1 in each

iteration, i.e., � = � + 1, we may increase more, say � =
�+h, h ≥ 1 in stepping. The time cost by stepping significantly

reduces, from O(m2n3) to O(m2n3/h). However, it may miss

a better model in between � and �+h. Therefore, stepping is a

tradeoff between efficiency and accuracy. (See Section VI-C4

for results under various stepping h.)

Example 5. For stepping h = 3, only the � values {1, 4, 7}
will be considered, instead of all 8 possible �. Similar to Exam-

ple 4, for tuple t2, it computes cost[2][1] = 3.73, cost[2][4] =
0.09, cost[2][7] = 3.03. Finally, �∗2 = 4 is selected and

Φ2 = {5.56,−0.87}� is returned.

B. Incremental Computation

For a specific �, Line 2 in Algorithm 3 calls the individual

Learning Algorithm 1 starting from scratch, without utilizing

any results from the previous learning, e.g., �− 1. It is worth

noting that the �− 1 learning neighbors of a tuple are always

subsumed in the corresponding � neighbors (Formula 13).

Intuitively, the learning computation on � − 1 neighbors has

no need to repeat in the learning over � neighbors.

1) Incremental Learning: Let T
(�)
i = NN(ti,F , �) =

{t1, . . . , t�} denote the set of � nearest neighbors of ti ∈ r , and

φ
(�)
i be the parameter of the individual regression learned from

T
(�)
i by Formula 5. As aforesaid, subsumption relationship

exists among the sets of nearest neighbors with different sizes

�. That is, for any tuple ti ∈ r , h ≥ 1, we have

T
(�)
i = NN(ti,F , �) ⊂ T

(�+h)
i = NN(ti,F , �+ h). (13)

Intuitively, the regression model, e.g., φ
(�+h)
i learned over

T
(�+h)
i , can be incrementally computed from the previous

results, i.e., φ
(�)
i learned over T

(�)
i , in Proposition 3, rather

than starting from scratch in Algorithm 1. Remarkably, we

show in Table III that the incremental computation reduces

the learning complexity from linear to constant (in terms of

the number �).

Let T
(�+h)
i = NN(ti,F , � + h) = {t1, . . . , t�, t�+1, . . . ,

t�+h}, having

T
(�+h)
i \ T

(�)
i = {t�+1, . . . , t�+h}. (14)

To represent the increment, we rewrite Y
(�+h) in Formula
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6 and X
(�+h) in Formula 7 as follows,

Y
(�+h) =

⎛
⎜⎜⎜⎝

Y
(�)

t�+1[Am]
...

t�+h [Am]

⎞
⎟⎟⎟⎠ =

(
Y

(�)

Y
(�,Δh)

)
,

(15)

X
(�+h) =

⎛
⎜⎜⎜⎜⎜⎝

X
(�)

1 t�+1[A1] . . . t�+1[Am−1]
1 t�+2[A1] . . . t�+2[Am−1]
...

...
. . .

...

1 t�+h [A1] . . . t�+h [Am−1]

⎞
⎟⎟⎟⎟⎟⎠

=

(
X

(�)

X
(�,Δh)

)
,

(16)

where Y
(�+h) is an (� + h) × 1 matrix, and X

(�+h) is an

(�+ h)×m matrix.

To incrementally compute φ
(�+h)
i by Formula 5, we define

U
(�+h) = (X (�+h))�X (�+h), (17)

V
(�+h) = (X (�+h))�Y (�+h), (18)

where U
(�+h) is an m ×m matrix, and V

(�+h) is an m × 1
matrix with both sizes independent of � and h.

Formula 5 for learning the parameter can be rewritten by

φ
(�+h)
i = (U (�+h) + αE )−1

V
(�+h). (19)

We show in the proposition below that U (�+h) and V
(�+h)

can be incrementally computed from U
(�) and V

(�), together

with Y
(�,Δh) and X

(�,Δh) defined in Formulas 15 and 16.

Proposition 3. U
(�+h),V (�+h) could be incrementally com-

puted from U
(�),V (�), having

U
(�+h) = U

(�) + (X (�,Δh))�X (�,Δh) (20)

V
(�+h) = V

(�) + (X (�,Δh))�Y (�,Δh) (21)

where � ∈ [1, n) and h ∈ [1, n− �]. (See proof in [1].)

Example 6. Suppose that learning on t1 with � = 3 has been

performed, having NN(t1, {A1}, 3) = {t1, t2, t3},

U
(3) = (X (3))�X (3) =

(
1 1 1
0 0.8 1.9

)⎛
⎝1 0
1 0.8
1 1.9

⎞
⎠ ,

V
(3) = (X (3))�Y (3) =

(
1 1 1
0 0.8 1.9

)⎛
⎝5.8
4.6
3.8

⎞
⎠ ,

φ
(3)
1 = (U (3) + αE )−1

V
(3) =

(
5.66
−1.03

)
.

Now we want to learn the parameter φ
(4)
1 of t1 for � =

4, having NN(t1, {A1}, 4) = NN(t1, {A1}, 3) ∪ {t4}. Instead

of recomputing entirely the matrices U
(4),V (4), they can be

incrementally computed from U
(3),V (3). Specifically, given

TABLE III: Time complexity for learning parameter φ
(�+h)
i

Computing From scratch Incremental

U m2(�+ h) m2h

V m(�+ h) mh

(U )−1 m3 m3

(U )−1
V m2 m2

TABLE IV: Dataset summary

Dataset |r | |R| Source Property

ASF 1.5k 6 UCI no clear global regression

CCS 1k 6 UCI

CCPP 10k 5 UCI

SN 100k 2 UCI

PHASE 10k 4 Siemens a clear global regression

CA 20k 9 KEEL sparse with high dimension

DA 7k 6 KEEL

MAM 1k 5 KEEL real missing, no truth

HEP 200 19 KEEL real missing, no truth

X
(3,1) =

(
1 2.9

)
and Y

(3,1) =
(
3.2

)
, we have

U
(4) = U

(3) + (X (3,1))�X (3,1) = U
(3) +

(
1 2.9
2.9 8.41

)
,

V
(4) = V

(3) + (X (3,1))�Y (3,1) = V
(3) +

(
3.2
9.28

)
,

φ
(4)
1 = (U (4) + αE )−1

V
(4) =

(
5.56
−0.87

)
.

2) Incremental Learning Algorithm: We revise Algorithm

1 for incremental learning. For each ti ∈ r , T
(�+h)
i \ T

(�)
i is

retrieved in Formula 14, rather than all the � nearest neighbors

in Line 2 in Algorithm 1. Referring to Proposition 3, we incre-

mentally compute U
(�+h),V (�+h) from U

(�),V (�), together

with Y
(�,Δh) and X

(�,Δh) on nearest neighbor increments.

Finally, φ
(�+h)
i is computed by Formula 19.

It is worth noting that incrementally computing φ
(�+h)
i only

needs to cache U
(�),V (�) in the previous step. Earlier results

such as U
(�−h),V (�−h) could be discarded. Given the same

h, the incremental computation naturally supports stepping.

3) Complexity Analysis: Table III lists the major steps and

costs for learning parameter φ
(�+h)
i in Formula 19. As shown,

the costs of computing U and V from scratch using Formulas

17 and 18 are linear in terms of �. With the incremental

computation in Formulas 20 and 21 in Proposition 3, the costs

become irrelevant to �. In other words, we reduce the learning

cost from linear O(m2�+m2h+m3) to constant O(m2h+m3)
in terms of � tuples.

VI. EXPERIMENT

While the theoretical analysis in Section IV proves that

our proposal subsumes some existing methods, the empirical

evaluation particularly concerns how IIM outperforms the

existing imputation approaches in practice, in Section VI-B.
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A. Settings

1) Datasets: We employ 9 datasets from different sources,

UCI1 [21], KEEL2 [2] and Siemens, with various properties

as summarized in Table IV. For instance, no clear linear

regression is observed globally in the ASF dataset, i.e., with

heterogeneity problem, while the PHASE dataset has a clear

regression relationship in three-phase electric power. The CA

dataset involves 9 attributes with higher dimension, which

leads to more serious sparsity issue. The MAM and HEP

datasets contain real-world missing values without ground

truth, and are used for evaluating the classification application

with / without imputation (in [1]).

2) Criteria: Following the same line of evaluating data

quality approaches [5], for each dataset (except the two

datasets without ground truth), we randomly select a set of

tuples as {tx} by removing values on (multiple) attributes

{Ax} as missing values. The remaining tuples are consid-

ered as complete tuples in r . When multiple incomplete

attributes {Ax} exist, we impute them one by one. RMS

error [18] is employed to evaluate the imputation accuracy,√∑
tx ,Ax

(tx [Ax ]−t′
x
[Ax ])2

|{(tx ,Ax )}|
, where tx [Ax ] is the original value

(ground truth) of the incomplete attribute, and t ′x [Ax ] is the

corresponding imputation. The lower the RMS error is, the

better the imputation accuracy will be, i.e., closer to the truth.

The sparsity issue states that a tuple does not have sufficient

neighbors that share the same/similar values. In other words,

the truth value varies from the values suggested by complete

neighbors. To evaluate the variance, we employ the coefficient

of determination [12], R2 = 1 −
∑

tx
(tx [Am ]−t

′

x
[Am ])2

∑
tx
(tx [Am ]−ti [Am ])2

, where

ti ∈ r , tx [Am ] is the truth value, and t ′x [Am ] is the value

suggested by complete neighbors (e.g., by kNN). We denote

R2
S the R2 measure on sparsity. The lower the measure R2

S

is, the more serious the sparsity issue will be in the data.

The heterogeneity issue states that tuples do not fit a single

global model. Similarly, we evaluate how the truth value varies

from the values predicted by the single global model. Again,

the aforesaid coefficient of determination is employed, where

t ′x [Am ] is the value predicted by the single global model (e.g.,

by GLR). The lower the measure R2
H is, the more serious the

heterogeneity issue will be in the data.

B. Comparison on Imputation Methods

This experiment compares our proposal IIM with the ex-

isting approaches listed in Table II in Section II. We use the

MICE implementation3 of PMM and BLR in R, the XGB

implementation in R, and the existing SVD implementation4.

Other approaches as well as our IIM are implemented in Java.

Thereby, the corresponding time costs could be compared, e.g.,

in Figures 7 and 9. While some significantly worse results

may not appear in the figures, the results of all methods can

be found in Tables V and VI.

1http://archive.ics.uci.edu/ml/datasets/
2http://sci2s.ugr.es/keel/datasets.php
3https://github.com/stefvanbuuren/mice/tree/master/R
4https://github.com/jeffwong/imputation

1) Imputation on Various Datasets: For each dataset in

Table V, we randomly pick 5% tuples as tx with one missing

value on a random attribute Ax . That is, there are 5% 1
|R|

missing values w.r.t. the total values in each dataset, where

|R| is the number of attributes in the dataset. For instance,

the CCPP data with 5 attributes has 5%
5 = 1% missing values.

When a dataset is with high sparsity but low heterogeneity,

i.e., small R2
S but large R2

H , such as CA in Table V, the GLR

approach using the predicted value via the regression model

shows a better imputation performance (RMS=0.6) than the

kNN method using the (aggregated) value in the complete

neighbor tuples (RMS=2.02).

Nevertheless, our proposed IIM always shows the lowest

imputation error. The result is not surprising referring to the

theoretical analysis in Section IV that our proposal subsumes

GLR and kNN as special cases.

To show applicability, we report the results on the larger

dataset SN in Table V. As shown, the better imputation result

of our proposed IIM is still consistently observed. (The results

of SVD, ILLS and XGB are not available since they cannot

be implemented on only two attributes.)

2) Varying the Missing Attribute Ax : Table VI reports the

results on various incomplete attributes Ax over the ASF data.

Owing to the different ranges of domain values on various

attributes, the imputation RMS error differs in attributes.

Approaches perform variously over the attributes with dif-

ferent domain characteristics in terms of sparsity and hetero-

geneity. In Table VI, for attribute A4 with small R2
S (high

sparsity) but large R2
H (low heterogeneity), the attribute model

methods (GLR and LOESS using the values predicted by re-

gression models) perform better than the tuple model methods

(kNN using the aggregated value of complete neighbor tuples).

In contrast, for attribute A6 with large R2
S (low sparsity)

but small R2
H (high heterogeneity), kNN outperforms GLR.

Nevertheless, since our proposal concerns both sparsity and

heterogeneity, IIM consistently shows the best performance.

The results verify the superiority of our proposal.

3) Varying the Number of Complete Attributes |F|: When

preparing the datasets, we randomly pick a certain percent (%)

tuples as tx with one missing value on a random attribute Ax .

By default, all the remaining attributes are used as complete

neighbors for imputation, i.e., F = R \ {Ax}. In order

to evaluate the imputation with different sizes of complete

attributes, the experiments in Figures 4 and 5 consider a subset

of R \ {Ax} as the complete attributes F . For instance, a

number of complete attributes |F| = 2 in the x axis denotes

F = {A1,A2}, instead of considering all the attributes in

R \ {Ax} = {A1,A2,A3, . . . } as complete attributes.

Figures 4 and 5 present the results on various number of

complete attributes |F|. For most approaches, it is not surpris-

ing that imputation improves under more complete attributes.

Specifically, with more attributes in F , the regression from

F to Ax will be more reliable (if exists). Furthermore, the

neighbors found w.r.t. larger F are more likely to share values.

With both aforesaid benefits, our IIM shows more significant

improvements when F is large.

168



TABLE V: Imputation RMS error of IIM compared to the existing approaches listed in Table II over various datasets

Dataset R2
S

R2
H

IIM kNN kNNE IFC GMM SVD ILLS GLR LOESS BLR ERACER PMM XGB

ASF 0.85 0.73 8.08 22.63 20.12 50.72 59.04 37.88 16.05 30.28 16.73 42.78 20.35 36.43 11.61

CA 0.03 0.90 0.49 2.02 1.85 2.03 2.12 50.11 12.76 0.6 0.54 0.88 0.6 0.77 0.7

CCPP 0.95 0.93 3.75 3.98 4.13 14.08 23.09 6.79 5.78 4.58 4.25 6.55 3.97 6.19 4.45

CCS 0.63 0.56 10.45 12.84 11.13 21.39 24.95 25.59 13.67 13.64 12.76 20.51 11.25 18.85 11.26

DA 0.65 0.68 15.52 16.99 17.75 22.92 23.99 21.92 94.5 16.68 15.88 23.69 16.18 23.47 15.56

PHASE 0.9 0.91 3.31 3.51 3.42 5.41 11.35 5.28 3.59 3.32 3.32 4.73 3.32 4.64 3.36

SN 0.79 0.05 0.11 0.12 0.12 0.28 0.43 - - 0.27 0.20 0.4 0.13 0.28 -

TABLE VI: Imputation RMS error on various incomplete attribute Ax over ASF dataset with 100 incomplete tuples

R2
S

R2
H

IIM kNN kNNE IFC GMM SVD ILLS GLR LOESS BLR ERACER PMM XGB

A1 0.47 0.46 192.5 235.2 247.8 326.9 334.8 320.4 248.3 234.4 201.8 328.5 206.8 289.9 204.9

A2 0.85 0.73 8.08 22.63 20.12 50.72 59.04 37.88 16.05 30.28 16.73 42.78 20.35 36.43 11.61

A3 0.73 0.5 1.49 5.11 4.08 8.87 12.15 9.67 4.73 6.54 3.66 9.18 4.51 8.72 2.07

A4 0.03 0.12 12.82 15.74 13.28 15.65 16.74 15.16 17.62 14.68 13.84 21.14 14.68 20.23 13.24

A5 0.79 0.63 13.85 64.94 60.29 125.58 138.22 88.76 34.9 80.54 55.95 116.65 58.01 90.53 23.23

A6 0.78 0.51 3.22 3.28 4.59 6.39 7.39 45.25 11.82 4.8 3.4 7.02 2.92 6.29 15.25
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Fig. 4: Varying the number of complete attributes |F|, over ASF with 100
incomplete tuples
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Fig. 5: Varying the number of complete attributes |F|, over CA with 1k
incomplete tuples

Figures 4(b) and 5(b) report the time cost of IIM in the

imputation phase (the offline learning phase only needs to

be processed once for imputing different incomplete tuples).

In contrast, LOESS and ILLS need to online learn the local

regression over the neighbors of the input incomplete tuple,

and thus have high imputation time cost. It is not surprising

that IIM shows similar time cost as kNN, since both approaches

need to find k nearest neighbors.

4) Varying the Number of Complete Tuples n = |r |:
Figures 6 and 7 report the results by randomly selecting n

tuples from the dataset as r of complete tuples. Generally,
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Fig. 6: Varying the number of complete tuples n = |r |, over ASF with 100
incomplete tuples
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Fig. 7: Varying the number of complete tuples n = |r |, over CA with 1k
incomplete tuples

more complete tuples lead to better imputation performance.

The interesting result in Figure 6(a) is that kNN relies more

on complete tuples to achieve lower imputation error, since it

requires the presence of sufficient neighbors sharing similar

values. Our IIM utilizing the individual regressions of tuples

benefits from more complete tuples as well.

5) Varying the Cluster Size of Incomplete Tuples: Rather

than introducing missing values in random tuples, we consider

incomplete tuples that cluster together. That is, complete

neighbors are very far away. Figure 8 reports the results

under various sizes of incomplete tuple clusters. For example,
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Fig. 8: Varying the cluster size of incomplete tuples, over ASF with 100
incomplete tuples in total
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Fig. 9: Varying the number of imputation neighbors k , over ASF with 100
incomplete tuples
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Fig. 10: Varying the number of imputation neighbors k , over CA with 1k
incomplete tuples

a cluster size 3 denotes that the 2 closest neighbors are

also incomplete tuples. It is not surprising that with the

increase of incomplete tuple cluster size, all the tuple model

based imputation methods relying on the closest neighbors

(e.g., kNN, ILLS) become worse. On the other hand, the

attribute model based methods (such as GLR or LOESS) are

relatively stable. Again, our proposed IIM still shows the best

performance, since it does not rely on the neighbor tuples to

share the same values, and thus can cope with the sparsity

issue introduced by the clusters of incomplete tuples.

C. Evaluation on Individual Learning

In this section, we evaluate the characteristic of proposed

techniques on the following aspects to show the performance

and rational behind IIM.

1) Varying the Number of Imputation Neighbors k : This

experiment evaluates various number of imputation neighbors

k . It is used in both kNN, kNNE and our IIM (in Algorithm

2 of imputation phase). Figures 9 and 10 report the results on

ASF (having heterogeneity issues) and CA (having sparsity

property) with 5% incomplete tuples. Generally, a moderately

large k is preferred. If k is too small, it is not reliable to
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Fig. 11: Comparison between adaptive learning and the learning over various
fixed number � of learning neighbors, over (a) ASF and (b) CA
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Fig. 12: Scalability of adaptive learning (with straightforward and incremental
computation) on the number n of tuples in r , over (a) SN and (b) CA

support the imputation. On the other hand, if k is too large,

irrelevant tuples may distract the imputation, as illustrated in

Figure 9(a). For the CA data with sparsity issue in Figure

10(a), changing the number of neighbors k does not help much

in imputation. (Some significantly worse results do not appear

in the figure, such as kNN as shown in Table V.)

2) Evaluating Adaptive Learning: This experiment eval-

uates two aspects: (1) how the fixed number � of learning

neighbors for all tuples in Algorithm 1 affects the imputation

results; and (2) does the adaptive learning with distinct number

of learning neighbors for different tuple in Algorithm 3 truly

improve the imputation?

First, as shown in Figure 11, a small number � of learning

neighbors may suffer from the overfitting problem and lead to

poor imputation. On the other hand, when � is too large, the

learned individual model may suffer from the heterogeneity

problem (under-fitting) and hence also has bad performance.

Manually choosing a proper � is non-trivial, which is very

different from datasets as illustrated in Figures 11 (a) and (b).

Nevertheless, the proposed Adaptive Learning Algorithm 3

can successfully address this problem, by adaptively consid-

ering a distinct number � of learning neighbors for each tuple

individually. As illustrated in Figure 11, the performance of

adaptive learning is better than setting a fixed � for all tuples.

3) Evaluating Incremental Learning: Figure 12 reports

the time cost of adaptive learning using straightforward and

incremental computation (with stepping h = 50) under various

number n of tuples in r . The incremental learning algorithm

devised in Section V-B2 shows up to one order of magni-

tude improvement compared to the straightforward adaptive

learning Algorithm 3. The result is not surprising, since the

incremental computation reduces the time cost of parameter

learning from linear to constant (in terms of �), as shown in
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Fig. 13: Varying stepping h over ASF

Table III in Section V-B3. To show scalability, we report time

cost of adaptive learning on SN in Figure 12(a). Again, the

result is generally similar to the CA dataset with 20k tuples.

4) Tradeoff via Stepping: Figure 13 present the results on

varying the stepping h studied in Section V-A2. The smaller

the h is, the more the candidate � values are considered.

When h = 1, all the possible � values are evaluated. It is not

surprising that a small stepping h with more candidate � values

considered leads to lower imputation error in Figure 13(a),

while the corresponding time cost is higher in Figure 13(b).

The exactly same imputation errors of straightforward and

incremental determination algorithms verify the correctness

of incremental computation. Figure 13(b) demonstrates again

the significant improvement in time cost by the incremental

determination algorithm.

VII. CONCLUSIONS

To cope with the challenges of sparsity (no sufficient similar

neighbors) and heterogeneity (tuples do not fit the same

regression model) in imputing numerical data, we propose

IIM, Imputation via Individual Models. The rationale of our

proposal is illustrated first by theoretically proving that some

existing approaches are indeed special cases of IIM under

extreme settings (i.e., � = 1 or � = n in Propositions 1

and 2). It further motivates us to select a proper number

� of learning neighbors (in between the extreme 1 and n)

to avoid over-fitting or under-fitting. Again, owing to the

heterogeneity issue, the number � of learning neighbors could

be different for learning the individual models of different

tuples. Through a validation step, we adaptively determine a

model for each complete tuple that can best impute other tuples

(in validation). Efficient incremental computation is devised

for adaptive learning, where the time complexity of learning

a model reduces from linear to constant. Experiments on read

data demonstrate the superiority of our proposal.
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[2] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. Garcı́a. KEEL

data-mining software tool: Data set repository, integration of algorithms
and experimental analysis framework. Multiple-Valued Logic and Soft

Computing, 17(2-3):255–287, 2011.
[3] N. S. Altman. An introduction to kernel and nearest-neighbor nonpara-

metric regression. The American Statistician, 46(3):175–185, 1992.

[4] C. Anagnostopoulos and P. Triantafillou. Scaling out big data missing
value imputations: pythia vs. godzilla. In SIGKDD, pages 651–660,
2014.

[5] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and
D. Santoro. Messing up with BART: error generation for evaluating
data-cleaning algorithms. PVLDB, 9(2):36–47, 2015.

[6] G. E. Batista, M. C. Monard, et al. A study of k-nearest neighbour as
an imputation method. HIS, 87(251-260):48, 2002.

[7] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for data cleaning. In ICDE, pages
746–755, 2007.

[8] S. v. Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation
by chained equations in r. Journal of statistical software, pages 1–68,
2010.

[9] Z. Cai, M. Heydari, and G. Lin. Microarray missing value imputation
by iterated local least squares. In Proceedings of 4th Asia-Pacific

Bioinformatics Conference., pages 159–168, 2006.
[10] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In

SIGKDD, pages 785–794, 2016.
[11] W. S. Cleveland and C. Loader. Smoothing by local regression:

Principles and methods. In Statistical theory and computational aspects

of smoothing, pages 10–49. Springer, 1996.
[12] J. L. Devore. Probability and Statistics for Engineering and the Sciences.

Cengage learning, 2011.
[13] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration.

Morgan Kaufmann, 2012.
[14] C. Domeniconi and B. Yan. Nearest neighbor ensemble. In 17th In-

ternational Conference on Pattern Recognition, ICPR 2004, Cambridge,

UK, August 23-26, 2004., pages 228–231, 2004.
[15] A. Farhangfar, L. A. Kurgan, and W. Pedrycz. A novel framework for

imputation of missing values in databases. IEEE Trans. Systems, Man,

and Cybernetics, Part A, 37(5):692–709, 2007.
[16] D. Firmani, M. Mecella, M. Scannapieco, and C. Batini. On the

meaningfulness of ”big data quality” (invited paper). Data Science and

Engineering, 1(1):6–20, 2016.
[17] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. A

pipelined framework for online cleaning of sensor data streams. In
ICDE, page 140, 2006.

[18] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin. Adaptive cleaning
for RFID data streams. In VLDB, pages 163–174, 2006.

[19] L. R. Landerman, K. C. Land, and C. F. Pieper. An empirical evaluation
of the predictive mean matching method for imputing missing values.
Sociological Methods &amp; Research, 26(1):3–33, 1997.

[20] D. Li, J. S. Deogun, W. Spaulding, and B. Shuart. Towards missing data
imputation: A study of fuzzy k-means clustering method. In RSCTC,
volume 3066 of Lecture Notes in Computer Science, pages 573–579,
2004.

[21] M. Lichman et al. Uci machine learning repository, 2013.
[22] R. J. Little. Regression with missing x’s: a review. Journal of the

American Statistical Association, 87(420):1227–1237, 1992.
[23] R. J. Little and D. B. Rubin. Statistical analysis with missing data,

volume 333. John Wiley &amp; Sons, 2014.
[24] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a database approach

for statistical inference and data cleaning. In SIGMOD, pages 75–86,
2010.

[25] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine

Learning. Adaptive computation and machine learning. MIT Press,
2012.

[26] S. Nikfalazar, C. Yeh, S. E. Bedingfield, and H. A. Khorshidi. A new
iterative fuzzy clustering algorithm for multiple imputation of missing
data. In FUZZ-IEEE, pages 1–6. IEEE, 2017.

[27] C. R. Rao, C. R. Rao, M. Statistiker, C. R. Rao, and C. R. Rao. Linear
statistical inference and its applications, volume 2. Wiley New York,
1973.

[28] D. B. Rubin. Multiple imputation for nonresponse in surveys, volume 81.
John Wiley &amp; Sons, 2004.

[29] B. Saha and D. Srivastava. Data quality: The other face of big data. In
ICDE, pages 1294–1297, 2014.

[30] O. G. Troyanskaya, M. N. Cantor, G. Sherlock, P. O. Brown, T. Hastie,
R. Tibshirani, D. Botstein, and R. B. Altman. Missing value estimation
methods for DNA microarrays. Bioinformatics, 17(6):520–525, 2001.

[31] X. Yan, W. Xiong, L. Hu, F. Wang, and K. Zhao. Missing value
imputation based on gaussian mixture model for the internet of things.
Mathematical Problems in Engineering, 2015, 2015.

171


